Звёздное небо в Альпах
Область формирующихся звёзд в Большом Магеллановом Облаке
Недавно взошедшее Солнце, ближайшая к Земле звезда

Звезда́ — массивный газовый шар, излучающий свет и удерживаемый в состоянии равновесия силами собственной гравитации и внутренним давлением, в недрах которого происходят (или происходили ранее) реакции термоядерного синтеза[1]. Ближайшей к Земле звездой является Солнце — типичный представитель спектрального класса G.

Звёзды образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности — тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Примечательно, что звёзды имеют отрицательную теплоёмкость[2].

Ближайшей к Солнцу звездой является Проксима Центавра. Она расположена в 4,2 светового года (4,2 св. года = 39 Пм = 39 трлн км = 3,9 × 1013 км) от центра Солнечной системы (см. также Список ближайших звёзд).

Невооружённым глазом (при хорошей остроте зрения) на небе видно около 6000 звёзд, по 3000 в каждом полушарии. За исключением сверхновых, все видимые с Земли звёзды (включая видимые в самые мощные телескопы) находятся[3] в местной группе галактик.

Единицы измерения

Большинство звёздных характеристик, как правило, выражается в СИ, но также используется и СГС (например, светимость выражается в эргах в секунду). Масса, светимость и радиус обычно даются в соотношении с нашим Солнцем:

солнечная масса: кг
солнечная светимость: Вт
солнечный радиус: м

Для обозначения расстояния до звёзд приняты такие единицы, как световой год и парсек.

Большие расстояния, такие как радиус гигантских звёзд или большая полуось двойных звёзд, часто выражаются с использованием астрономической единицы (а.e.), равной среднему расстоянию между Землёй и Солнцем (около 150 млн км).🦁🦁🦁

Виды звёзд

Классификации звёзд начали строить сразу после того, как начали получать их спектры. В первом приближении спектр звезды можно описать как спектр чёрного тела, но с наложенными на него линиями поглощения или излучения. По составу и силе этих линий звезде присваивался тот или иной определённый класс. Так поступают и сейчас, однако, нынешнее деление звёзд гораздо более сложное: дополнительно оно включает абсолютную звёздную величину, наличие или отсутствие переменности блеска и размеров, а основные спектральные классы разбиваются на подклассы.

В начале XX века Герцшпрунг и Рассел нанесли на диаграмму «Абсолютная звёздная величина» — «спектральный класс» различные звёзды, и оказалось, что бо́льшая их часть сгруппирована вдоль узкой кривой. Позже эта диаграмма (ныне носящая название диаграмма Герцшпрунга — Рассела) оказалась ключом к пониманию и исследованиям процессов, происходящих внутри звезды.

Теперь, когда есть теория внутреннего строения звёзд и теория их эволюции, стало возможным и объяснение существования классов звёзд. Оказалось, что всё многообразие видов звёзд — это не более чем отражение количественных характеристик звёзд (такие как масса и химический состав) и эволюционного этапа, на котором в данный момент находится звезда.

В каталогах и на письме класс звёзд пишется в одно слово, при этом сначала идёт буквенное обозначение основного спектрального класса (если класс точно не определён, пишется буквенный диапазон, к примеру, O-B), далее арабскими цифрами уточняется спектральный подкласс, потом римскими цифрами идёт класс светимости (номер области на диаграмме Герцшпрунга — Рассела), а затем идёт дополнительная информация. К примеру, Солнце имеет класс G2V.

Звёзды главной последовательности

Наиболее многочисленный класс звёзд составляют звёзды главной последовательности, к такому типу звёзд принадлежит и наше Солнце. С эволюционной точки зрения главная последовательность — это то место диаграммы Герцшпрунга-Рассела, на котором звезда находится большую часть своей жизни. В это время потери энергии на излучения компенсируются за счёт энергии, выделяющейся в ходе ядерных реакций. Время жизни на главной последовательности определяется массой и долей элементов тяжелее гелия (металличностью).

Современная (гарвардская) спектральная классификация звёзд, разработана в Гарвардской обсерватории в 1890—1924 годах.

Основная (гарвардская) спектральная классификация звёзд
Класс Температура,
K
Истинный цвет Видимый цвет[4][5] Основные признаки [6]
O 30 000—60 000 голубой голубой Слабые линии нейтрального водорода, гелия, ионизованного гелия, многократно ионизованных Si, C, N.
B 10 000—30 000 бело-голубой бело-голубой и белый Линии поглощения гелия и водорода. Слабые линии H и К Ca II.
A 7500—10 000 белый белый Сильная бальмеровская серия, линии H и К Ca II усиливаются к классу F. Также ближе к классу F начинают появляться линии металлов
F 6000—7500 жёлто-белый белый Сильны Линии H и К Ca II, линии металлов. Линии водорода начинают ослабевать. Появляется линия Ca I. Появляется и усиливается полоса G, образованная линиями Fe, Ca и Ti.
G 5000—6000 жёлтый жёлтый Линии H и К Ca II интенсивны. Линия Ca I и многочисленные линии металлов. Линии водорода продолжают слабеть, Появляются полосы молекул CH и CN.
K 3500—5000 оранжевый желтовато-оранжевый Линии металлов и полоса G интенсивны. Линии водорода почти не заметны. Появляются полосы поглощения TiO.
M 2000—3500 красный оранжево-красный Интенсивны полосы TiO и других молекул. Полоса G слабеет. Всё ещё заметны линии металлов.

Коричневые карлики

Коричневые карлики — это тип звёзд, в которых ядерные реакции никогда не могли компенсировать потери энергии на излучение. Долгое время коричневые карлики были гипотетическими объектами. Их существование предсказали в середине XX в., основываясь на представлениях о процессах, происходящих во время формирования звёзд. Однако в 1995 году впервые был обнаружен коричневый карлик. На сегодняшний день открыто достаточно много звёзд подобного типа. Их спектральный класс М — T. В теории выделяется ещё один класс — обозначаемый Y (в 2011 году его существование подтвердилось открытием нескольких звёзд с температурой 300—500 К: WISE J014807.25−720258.8, WISE J041022.71+150248.5, WISE J140518.40+553421.5, WISE J154151.65−225025.2, WISE J173835.52+273258.9, WISE J1828+2650 и WISE J205628.90+145953.3).

Белые карлики

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и её быстрое перемещение по диаграмме Герцшпрунга — Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик (маломассивные звёзды), в случае, если её масса на поздних стадиях эволюции превышает предел Чандрасекара — как нейтронная звезда (пульсар), если же масса превышает предел Оппенгеймера — Волкова — как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями — вспышками сверхновых.

Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

Красные гиганты

Красные гиганты и сверхгиганты — это звёзды с довольно низкой эффективной температурой (3000—5000 К), однако с огромной светимостью. Типичная абсолютная звёздная величина таких объектов −3m—0m(I и III класс светимости). Для их спектра характерно присутствие молекулярных полос поглощения, а максимум излучения приходится на инфракрасный диапазон.

Переменные звёзды

Переменная звезда — это звезда, у которой за всю историю наблюдения хоть один раз менялся блеск. Причин переменности много и связаны они могут быть не только с внутренними процессами: если звезда двойная и луч зрения лежит или находится под небольшим углом к полю зрения, то одна звезда, проходя по диску звезды, будет его затмевать; также блеск может измениться, если свет от звезды пройдет сквозь сильное гравитационное поле. Однако в большинстве случаев переменность связана с нестабильными внутренними процессами. В последней версии общего каталога переменных звёзд принято следующее деление[7]:

  1. Эруптивные переменные звёзды — это звёзды, изменяющие свой блеск в силу бурных процессов и вспышек в их хромосферах и коронах. Изменение светимости происходит обычно вследствие изменений в оболочке или потери массы в форме звёздного ветра переменной интенсивности и/или взаимодействия с межзвёздной средой.
  2. Пульсирующие переменные звёзды — это звёзды, показывающие периодические расширения и сжатия своих поверхностных слоёв. Пульсации могут быть радиальными и не радиальными. Радиальные пульсации звезды оставляют её форму сферической, в то время как не радиальные пульсации вызывают отклонение формы звезды от сферической, а соседние зоны звезды могут быть в противоположных фазах.
  3. Вращающиеся переменные звёзды — это звёзды, у которых распределение яркости по поверхности неоднородно и/или они имеют неэлипсоидальную форму, вследствие чего при вращении звёзд наблюдатель фиксирует их переменность. Неоднородность яркости поверхности может быть вызвана наличием пятен или температурных или химических неоднородностей, вызванных магнитными полями, чьи оси не совпадают с осью вращения звезды.
  4. Катаклизмические (взрывные и новоподобные) переменные звёзды. Переменности этих звёзд вызваны взрывами, причиной которых являются взрывные процессы в их поверхностных слоях (новые) или глубоко в их недрах (сверхновые).
  5. Затменно-двойные системы
  6. Оптические переменные двойные системы с жёстким рентгеновским излучением
  7. Новые типы переменных — типы переменности, открытые в процессе издания каталога и поэтому не попавшие в уже изданные классы.

Типа Вольфа — Райе

Звёзды Вольфа — Райе — класс звёзд, для которых характерны очень высокая температура и светимость; звёзды Вольфа — Райе отличаются от других горячих звёзд наличием в спектре широких полос излучения водорода, гелия, а также кислорода, углерода, азота в разных степенях ионизации (NIII — NV, CIII — CIV, OIII — OV). Ширина этих полос может достигать 100 Å, а излучение в них может в 10-20 раз превышать излучение в континууме. Звёзды такого типа имеют свой класс — W[8]. Однако подклассы строятся совсем не как у звёзд главной последовательности:

  1. WN — подкласс Вольфа-Райе звёзд в спектрах которых есть линии NIII — V и HeI-II.
  2. WO — в их спектрах сильны линии кислорода. Особенно ярки линии OVI λ3811 — 3834
  3. WC — звёзды, богатые углеродом.

Окончательной ясности происхождения звёзд типа Вольфа — Райе не достигнуто. Однако можно утверждать, что в нашей Галактике это гелиевые остатки массивных звёзд, сбросившие значительную часть массы на каком-то этапе своей эволюции[9].

Типа T Тельца

Звезда типа T Тельца с околозвёздным диском

Звёзды типа T Тельца (T Tauri, T Tauri stars, TTS) — класс переменных звёзд, названный по имени своего прототипа Т Тельца. Обычно их можно обнаружить рядом с молекулярными облаками и идентифицировать по их переменности (весьма нерегулярной) в оптическом диапазоне и хромосферной активности.

Они принадлежат к звёздам спектральных классов F, G, K, M и имеют массу меньше двух солнечных. Период вращения от 1 до 12 дней. Температура их поверхности такая же, как и у звёзд главной последовательности той же массы, но они имеют несколько большую светимость, потому что их радиус больше. Основным источником их энергии является гравитационное сжатие[10].

В спектре звёзд типа T Тельца присутствует литий, который отсутствует в спектрах Солнца и других звёзд главной последовательности, так как он разрушается при температуре выше 2,500,000 K[11].

Новые

Новая звезда — тип катаклизмических переменных. Блеск у них меняется не так резко, как у сверхновых (хотя амплитуда может составлять 9m): за несколько дней до максимума звезда лишь на 2m слабее. Количество таких дней определяет, к какому классу новых относится звезда[12]:

  1. Очень быстрые, если это время (обозначаемое как t2) меньше 10 дней.
  2. Быстрые — 11<t2<25 дней
  3. Очень медленные: 151<t2<250 дней
  4. Предельно медленные, находящиеся вблизи максимума годами.

Существует зависимость максимума блеска новой от t2. Иногда эту зависимость используют для определения расстояния до звезды. Максимум вспышки в разных диапазонах ведёт себя по-разному: когда в видимом диапазоне уже наблюдается спад излучения, в ультрафиолете всё ещё продолжается рост. Если наблюдается вспышка и в инфракрасном диапазоне, то максимум будет достигнут только после того, как блеск в ультрафиолете пойдет на спад. Таким образом болометрическая светимость во время вспышки довольно долго остаётся неизменной.

В нашей Галактике можно выделить две группы новых: новые диска (в среднем они ярче и быстрее), и новые балджа, которые немного медленнее и, соответственно, немного слабее.

Сверхновые

Сверхно́вые звёзды — звёзды, заканчивающие свою эволюцию в катастрофическом взрывном процессе. Термином «сверхновые» были названы звёзды, которые вспыхивали гораздо (на порядки) сильнее так называемых «новых звёзд». На самом деле, ни те, ни другие физически новыми не являются, всегда вспыхивают уже существующие звёзды. Но в нескольких исторических случаях вспыхивали те звёзды, которые ранее были на небе практически или полностью не видны, что и создавало эффект появления новой звезды. Тип сверхновой определяется по наличию в спектре вспышки линий водорода. Если он есть, значит сверхновая II типа, если нет — то I типа.

Гиперновые

Гиперновая — коллапс исключительно тяжёлой звезды после того, как в ней больше не осталось источников для поддержания термоядерных реакций; другими словами, это очень большая сверхновая.

С начала 1990-х годов были замечены столь мощные взрывы звёзд, что сила взрыва превышала мощность взрыва обычной сверхновой примерно в 100 раз, а энергия взрыва превышала 1046 джоулей. К тому же, многие из этих взрывов сопровождались очень сильными гамма-всплесками. Интенсивное исследование неба нашло несколько аргументов[источник не указан 1264 дня] в пользу существования гиперновых звёзд, но пока что они являются гипотетическими объектами.

Сегодня термин используется для описания взрывов звёзд с массой более 100 масс Солнца. Гиперновые, теоретически, могли бы создать серьёзную угрозу Земле вследствие сильной радиоактивной вспышки, но в настоящее время вблизи Земли нет звёзд, которые могли бы представлять такую опасность. По некоторым данным[источник не указан 1264 дня], 440 миллионов лет назад имел место взрыв гиперновой звезды вблизи Земли. Вероятно, короткоживущий изотоп никеля 56Ni попал на Землю в результате этого взрыва.

LBV

Яркие голубые переменные (ЯГП), также известные как переменные типа S Золотой Рыбы (SDOR), — это очень яркие голубые пульсирующие гипергиганты, названные по звезде S Золотой Рыбы (S Dor) в БМО. Они показывают неправильные (иногда циклические) изменения блеска с амплитудой от 1m до 7m. Обычно, самые яркие голубые звёзды галактик, в которых они наблюдаются. Как правило, связаны с диффузными туманностями и окружены расширяющимися оболочками. Встречаются исключительно редко.

Яркие голубые переменные могут сиять в миллион раз сильнее, чем Солнце и их масса может быть 150 солнечных, подходя к теоретическому пределу на массу звезды, что делает их самыми яркими, горячими и мощными звёздами во Вселенной[источник не указан 1264 дня]. Звёзды этого типа всегда находятся в состоянии неустойчивого гидростатического равновесия, поскольку с их поверхности постоянно истекает мощнейший звёздный ветер, который всё время снижает их массу. По этой причине они всегда окружены туманностями (см. Эта Киля, которая является наиболее близкой и наиболее изученной ЯГП). Из-за их огромной массы время жизни таких звёзд очень мало: всего несколько миллионов лет.

Современные теории считают, что ЯГП — это только стадия эволюции очень массивных звёзд, которая позволяет им сбросить часть массы. Они могут эволюционировать в звезду Вольфа — Райе, перед тем как взорваться как сверхновая, или даже как гиперновая, если они не потеряют достаточно массы.

ULX

Ультраяркие рентгеновские источники (ULXs) — небесное тело с сильным излучением в рентгеновском диапазоне (1039 — 1042 эрг с−1 в диапазоне 0,5 −100 кэВ), квазипериодическим на масштабе порядка 20 с, шкала переменности от нескольких секунд до нескольких лет. Если предположить, что излучение изотропно, то для согласования с эдингтоновской светимостью, необходимо, чтобы масса гравитирующего тела была 10 000 M[13][14]. О природе явления ведутся споры. Большинство моделей полагает, что в качестве источника излучения служит чёрная дыра, а вот о механизме высвечивания энергии единого мнения нет.

Нейтронные звёзды

На поздних стадиях эволюции у звёзд с массой 8—10 M давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны. Масса таких звёзд начинается от предела Чандрасекара (1,44 M) и до предела Оппенгеймера — Волкова при диаметре порядка 10 км.

Ещё одной особенностью нейтронных звёзд является сильное магнитное поле. Благодаря ему и быстрому вращению, приобретённому звездой из-за несферического коллапса или как результат сохранения вращательного момента при сильном сжатии, на небе наблюдаются радио- и рентгеновские пульсары.

Уникальные звезды

SS 433 (известный также как V 1343 Орла и 1908+05), или объект Стефенсона — Сандьюлика — двойная затменная звёздная система 14-й звёздной величины, включающая в себя два компонента. Один из них представляет собой массивную звезду высокой температуры (около 30 тыс. кельвинов) и светимости, а другой — компактную звезду (нейтронную звезду или чёрную дыру). С главной звезды на спутник непрерывно перетекает струя газа, так как гигант не может сохранить свою целостность в поле тяготения своего очень компактного соседа. Вокруг компактной звезды формируется аккреционный диск из перетекающего на неё вещества, который затмевает главную звезду раз в 13 суток. Спутник окружён облаком плазмы, имеющим очень высокую температуру и светимость. Эти процессы порождают мощное рентгеновское излучение.

Других звёздных систем, подобных SS 433, астрономами в нашей Галактике пока не найдено.

Звёздные системы

Звёздные системы могут быть одиночными и кратными: двойными, тройными и большей кратности. В случае если в систему входит более десяти звёзд, то принято её называть звёздным скоплением. Двойные (кратные) звёзды очень распространены. По некоторым оценкам, более 70 % звёзд в галактике кратные[15]. Так, среди 32 ближайших к Земле звёзд 12 кратных, из которых 10 двойных (в том числе и самая яркая из визуально наблюдаемых звёзд — Сириус). В окрестностях 20 парсек от Солнечной системы из более 3000 звёзд, около половины — двойные звёзды всех типов[16].

Двойные звёзды

Двойная звезда, или двойная система — две гравитационно-связанные звезды, обращающиеся по замкнутым орбитам вокруг общего центра масс. C помощью двойных звёзд существует возможность узнать массы звёзд и построить различные зависимости. А не зная зависимости масса — радиус, масса — светимость и масса — спектральный класс, практически ничего невозможно сказать ни о внутреннем строении звёзд, ни об их эволюции.

Но двойные звёзды не изучались бы столь серьёзно, если бы все их значение сводилось к информации о массе. Несмотря на многократные попытки поиска одиночных чёрных дыр, все кандидаты в чёрные дыры находятся в двойных системах. Звёзды Вольфа — Райе были изучены именно благодаря двойным звёздам.

Тесные двойные звёзды (ТДС)

Среди двойных звёзд выделяют так называемые тесные двойные системы (ТДС): двойные системы, в которых происходит обмен веществом между звёздами. Расстояние между звёздами в тесной двойной системе сравнимо с размерами самих звёзд, поэтому в таких системах возникают более сложные эффекты, чем просто притяжение: приливное искажение формы, прогрев излучением более яркого компаньона и другие эффекты.

Звёздные скопления

Звёздное скопление — группа звёзд, имеющих общее происхождение, положение в пространстве и направление движения. Члены таких групп связаны между собой взаимным тяготением. Большинство из известных скоплений находится в нашей Галактике.

Открытие звёздных скоплений принадлежит английскому астроному Уильяму Гершелю. Всего им было описано около 2 тыс. скоплений. До наблюдений Гершеля считалось, что звёзды однородно распределены по всей Вселенной. Так было и во времена Исаака Ньютона. Но Гершель смог опровергнуть это мнение, доказав, что распределение звёзд в пространстве очень неравномерно. Многие из них собраны в тесные группы; Гершель дал таким группам название «звёздные кучи», а затем они были переименованы в «звёздные скопления». Несколько позже, в XIX веке, скопления были разделены учёными на два класса (а позднее к ним добавился ещё один).

Известны три класса звёздных скоплений: шаровые, рассеянные и ассоциации. Классы различаются между собой по внешнему виду, количеству звёзд и по расстояниям между компонентами скопления. Кроме того, существуют различия по химическому составу, возрасту, типам звёзд, входящих в группу, а также по расположению скоплений в Галактике.

Шаровые

Шаровое скопление — скопление звёзд, имеющее сферическую или слегка сплюснутую форму. Их диаметр колеблется от 20 до 100 парсек. Это одни из старейших объектов во Вселенной. Типичный возраст шаровых скоплений — более 10 млрд лет. Поэтому в их состав входят маломассивные старые звёзды, большинство из которых находится на завершающих стадиях своей эволюции. Как следствие, здесь много нейтронных звёзд, цефеид и белых карликов; предполагается также наличие чёрных дыр. Нередко в скоплениях происходят вспышки новых звёзд.

Шаровые скопления отличаются высокой концентрацией звёзд. К примеру, в кубическом парсеке в центре такого скопления находится от нескольких сот до десятков тысяч звёзд. Для сравнения: в окрестностях Солнца на объём более одного кубического парсека приходится только одна звезда.

Шаровые скопления возникли из гигантского догалактического облака, из которого впоследствии сформировалась Галактика. В Млечном Пути насчитывают более 150 шаровых скоплений, большинство из которых концентрируются к центру галактики.

Рассеянные

Рассеянное скопление — второй класс звёздных скоплений. Это звёздная система, компоненты которой располагаются на достаточно большом расстоянии друг от друга. Этим она отличается от шаровых скоплений, где концентрация звёзд сравнительно велика. По этой причине рассеянные скопления очень трудно обнаруживать и изучать. Если звёзды, находящиеся от наблюдателя на одинаковом расстоянии, движутся в одном и том же направлении, есть основания предполагать, что они входят в рассеянное скопление.

Наиболее известные представители этого класса скоплений — Плеяды и Гиады, находящиеся в созвездии Тельца.

Рассеянные скопления довольно многочисленны. Их известно больше, чем шаровых. Некоторые из них находятся на близком расстоянии от Солнца — например, до скопления Гиады около 40 парсек.

Рассеянные скопления обычно состоят из нескольких сот или тысяч звёзд, хотя встречаются и более многочисленные группы. По большей части сюда входят массивные и яркие звёзды, а также переменные. Рассеянные скопления имеют небольшую массу. Их гравитационное поле не способно удерживать компоненты длительное время и те постепенно отдаляются друг от друга.

Ассоциации

Звёздные ассоциации — разреженное скопление молодых звёзд высокой светимости, отличающееся от других типов скоплений своим размером (около 200—300 световых лет). Ассоциации, как правило, связаны с облаками молекулярного газа, имеющего сравнительно низкую температуру. Этот газ является «строительным материалом» для звёзд. Образовавшиеся массивные звёзды нагревают окружающий их молекулярный газ, который со временем рассеивается в межзвёздной среде. Ассоциации, также как и рассеянные скопления, неустойчивы. Они медленно расширяются и их компоненты отдаляются друг от друга.

Галактики

Галактика — это крупное скопление звёзд (чаще всего 10—50 Кпс в диаметре), межзвёздного газа и пыли, тёмной материи.

Основные характеристики и процессы

Соотношение размеров планет Солнечной системы и некоторых хорошо известных звёзд, включая VY Большого Пса:
  1. Меркурий < Марс < Венера < Земля;
  2. Земля < Нептун < Уран < Сатурн < Юпитер;
  3. Юпитер < Вольф 359 < Солнце < Сириус;
  4. Сириус < Поллукс < Арктур < Альдебаран;
  5. Альдебаран < Ригель < Антарес < Бетельгейзе;
  6. Бетельгейзе < μ Цефея < VV Цефея A < VY Большого Пса.

У звезды два параметра, определяющие все внутренние процессы — масса и химический состав. Если их задать для одиночной звезды, то на любой момент времени можно предсказать все остальные физические характеристики звезды, такие как блеск, спектр, размер, внутренняя структура.

Расстояние

Существует множество способов определить расстояние до звезды. Но наиболее точный и основой для всех остальных методов является метод измерения параллаксов звёзд. Первым измерил расстояние до звезды Веги российский астроном Василий Яковлевич Струве в 1837 году. Определение параллаксов с поверхности Земли позволяет измерить расстояния до 100 парсек, а со специальных астрометрических спутников, таких как Hipparcos, — до 1000 пк.

Если звезда входит в состав звёздного скопления, то мы не сильно ошибёмся, если примем расстояние до звезды равным расстоянию до скопления. Если звезда принадлежит к классу цефеид, то расстояние можно найти из зависимости период пульсации — абсолютная звёздная величина.

В основном, для определения расстояния до далёких звёзд используется фотометрия[17][18].

Масса

Достоверно определить массу звезды можно, только если она является компонентом двойной звезды. В этом случае массу можно вычислить, используя обобщённый третий закон Кеплера. Но даже при этом оценка погрешности составляет от 20 % до 60 % и в значительной степени зависит от погрешности определения расстояния до звезды. Во всех прочих случаях приходится определять массу косвенно, например, из зависимости масса — светимость[19].

В октябре 2010 года был предложен ещё один способ измерения массы звезды: он базируется на наблюдении за прохождением по диску звезды планеты со спутником. Проанализировав полученные данные и применив законы Кеплера, можно определить массу и плотность звезды и планеты, период вращения планеты и её спутника, их размеры относительно размеров звезды и некоторые другие их характеристики. На настоящий момент (18 октября 2010 г.) метод пока не был использован на практике[20].

Наиболее массивной из известных является R136a1, массой в 265 солнечных[21]

Химический состав

Несмотря на то, что доля элементов тяжелее гелия в химическом составе звёзд исчисляется не более чем несколькими процентами, они играют важную роль в жизни звезды. Благодаря им ядерные реакции могут замедляться или ускоряться, а это отражается как на яркости звезды, так и на цвете и на продолжительности её жизни. Так, чем больше металличность массивной звезды, тем меньше будет остаток при взрыве сверхновой.

Наблюдатель, зная химический состав звезды, может довольно уверенно судить о времени образования звезды.

Химический состав звёзд очень сильно зависит от типа звёздного населения и отчасти от массы — у массивных звёзд в недрах полностью отсутствуют элементы тяжелее гелия (в молодом возрасте этих звёзд), жёлтые и красные карлики сравнительно богаты тяжёлыми элементами — они помогают зажечься звёздам при небольшой массе газопылевого облака.[источник не указан 3290 дней]

Структура

Расположение лучистой зоны и конвекционной в звёздах разной массы

В общем случае у звезды, находящейся на главной последовательности, можно выделить три внутренние зоны: ядро, конвективную зону и зону лучистого переноса.

Ядро — это центральная область звезды, в которой идут ядерные реакции.

Конвективная зона — зона, в которой перенос энергии происходит за счёт конвекции. Для звёзд с массой менее 0,5 M она занимает всё пространство от поверхности ядра до поверхности фотосферы. Для звёзд с массой, сравнимой с солнечной, конвективная часть находится на самом верху, над лучистой зоной. А для массивных звёзд она находится внутри, под лучистой зоной.

Лучистая зона — зона, в которой перенос энергии происходит за счёт излучения фотонов. Для массивных звёзд эта зона расположена между ядром и конвективной зоной, у маломассивных она отсутствует, а у звёзд больше массы Солнца находится у поверхности.

На более поздних стадиях добавляются дополнительные слои, в которых идут ядерные реакции с элементами, отличными от водорода. И чем больше масса, тем больше таких слоев. У звёзд с массой, на 1—2 порядка превышающей Мʘ, таких слоёв может быть до 6, где в верхнем, первом слое всё ещё горит водород, а в нижнем идут реакции превращения углерода в более тяжёлые элементы, вплоть до железа. В таком случае в недрах звезды расположено инертное, в плане ядерных реакций, железное ядро.

Над поверхностью звезды находится атмосфера, как правило, состоящая из трёх частей: фотосферы, хромосферы и короны.

Фотосфера — самая глубокая часть атмосферы, в её нижних слоях формируется непрерывный спектр.

Ядерные реакции

Для звёзд главной последовательности основным источником энергии являются ядерные реакции с участием водорода: протон-протонный цикл, характерный для звёзд с массой около солнечной, и CNO-цикл, идущий только в массивных звёздах и только при наличии в их составе углерода. На более поздних стадиях жизни звезды могут идти ядерные реакции и с более тяжёлыми элементами вплоть до железа.

Основные цепочки ядерных реакций в звёздах
Протон-протонный цикл CNO-цикл

Перенос излучения