Ускоре́ние свобо́дного паде́ния на пове́рхности[1] некоторых небесных тел, м/с2 и g
Земля 9,81 м/с2 1,00 g Солнце 273,1 м/с2 27,85 g
Луна 1,62 м/с2 0,165 g Меркурий 3,68—3,74 м/с2 0,375—0,381 g
Венера 8,88 м/с2 0,906 g Марс 3,86 м/с2 0,394 g
Юпитер 23,95 м/с2 2,442 g Сатурн 10,44 м/с2 1,065 g
Уран 8,86 м/с2 0,903 g Нептун 11,09 м/с2 1,131 g

Ускоре́ние свобо́дного паде́ния (ускорение силы тяжести) — ускорение, придаваемое телу силой тяжести, при исключении из рассмотрения других сил. В соответствии с уравнением движения тел в неинерциальных системах отсчёта[2] ускорение свободного падения численно равно силе тяжести, воздействующей на объект единичной массы.

Ускорение свободного падения на поверхности Земли g (обычно произносится как «же») варьируется от 9,780 м/с² на экваторе до 9,82 м/с² на полюсах[3]. Стандартное («нормальное») значение, принятое при построении систем единиц, составляет g = 9,80666 м/с²[4][5]. Стандартное значение g было определено как «среднее» в каком-то смысле на всей Земле, оно примерно равно ускорению свободного падения на широте 45,5° на уровне моря. В приблизительных расчётах его обычно принимают равным 9,81, 9,8 или, грубо, 10 м/с².

Физическая сущность

Две компоненты ускорения свободного падения на Земле g: гравитационная (в приближении сферически симметричной зависимости плотности от расстояния от центра Земли) равна GM/r2 и центробежная, равная ω2a, где a — расстояние до земной оси, ω — угловая скорость вращения Земли.

Для определённости будем считать, что речь идёт об ускорении свободного падения на Земле. Эту величину можно представить как векторную сумму двух слагаемых: гравитационного ускорения, вызванного земным притяжением, и центростремительного ускорения, связанного с вращением Земли.

Центростремительное ускорение

Центростремительное ускорение является следствием вращения Земли вокруг своей оси. Именно центростремительное ускорение, вызванное вращением Земли вокруг своей оси, вносит наибольший вклад в неинерциальность системы отсчёта, связанную с Землёй. В точке, находящейся на расстоянии a от оси вращения, центростремительное ускорение равно ω2a, где ω — угловая скорость вращения Земли, определяемая выражением ω = 2π/T, в котором Т — время одного оборота вокруг своей оси (звёздные сутки), равное для Земли 86164 секунды. Центростремительное ускорение направлено по нормали к оси вращения Земли. На экваторе оно составляет 3,39636 см/с2, причем на других широтах направление вектора его не совпадает с направлением вектора гравитационного ускорения, направленного к центру Земли.

Гравитационное ускорение

Гравитационное ускорение на различной высоте h над уровнем моря
h, км g, м/с2 h, км g, м/с2
0 9,8066 20 9,7452
1 9,8036 50 9,6542
2 9,8005 80 9,5644
3 9,7974 100 9,505
4 9,7943 120 9,447
5 9,7912 500 8,45
6 9,7882 1000 7,36
8 9,7820 10 000 1,50
10 9,7759 50 000 0,125
15 9,7605 400 000 0,0025

В соответствии с законом всемирного тяготения, величина гравитационного ускорения на поверхности Земли или космического тела связано с его массой M следующим соотношением:

,

где G — гравитационная постоянная (6,67408(31)·10−11 м3·с−2·кг−1)[6], а r — радиус планеты. Это соотношение справедливо в предположении, что плотность вещества планеты сферически симметрично. Приведённое соотношение позволяет определить массу любого космического тела, включая Землю, зная её радиус и гравитационное ускорение на её поверхности, либо наоборот по известной массе и радиусу определить ускорение свободного падения на поверхности.

Исторически масса Земли была впервые определена Генри Кавендишем, который провёл первые измерения гравитационной постоянной.

Гравитационное ускорение на высоте h над поверхностью Земли (или иного космического тела) можно вычислить по формуле:

,
где M — масса планеты.

Ускорение свободного падения на Земле

Ускорение свободного падения у поверхности Земли зависит от широты, времени суток, атмосферного давления и других факторов. Приблизительно оно может быть вычислено (в м/с²) по эмпирической формуле[7][8]:

где  — широта рассматриваемого места,
 — высота над уровнем моря в метрах.

Полученное значение лишь приблизительно совпадает с ускорением свободного падения в данном месте. При более точных расчётах необходимо использовать одну из моделей гравитационного поля Земли, дополнив её поправками, связанными с вращением Земли, приливными воздействиями и другими факторами.

Пространственные изменения гравитационного поля Земли (гравитационные аномалии) связаны с неоднородности плотности в её недрах, что может быть использовано для поиска залежей полезных ископаемых методами гравиразведки.

Почти везде ускорение свободного падения на экваторе ниже, чем на полюсах, за счет центробежных сил, возникающих при вращении планеты, а также потому, что радиус r на полюсах меньше, чем на экваторе из-за сплюснутой формы планеты. Однако места экстремально низкого и высокого значения g несколько отличаются от следствий из этой упрощённой модели. Так, самое низкое значение g зафиксировано на горе Уаскаран в Перу (9,7639 м/с²) в 1000 км южнее экватора, а самое большое (9,8337 м/с²) — в 100 км от северного полюса[9].

Измерение

Основная статья: Гравиметрия (геодезия)

Ускорение свободного падения у поверхности Земли может быть измерено посредством гравиметра. Различают две разновидности гравиметров: абсолютные и относительные. Абсолютные гравиметры измеряют ускорение свободного падения непосредственно. Относительные гравиметры, некоторые модели которых действуют по принципу пружинных весов, определяют приращение ускорения свободного падения относительно значения в некотором исходном пункте.

Ускорение свободного падения на поверхности Земли или другой планеты может быть также вычислено на основе данных о вращении планеты и её гравитационном поле. Последнее может быть определено посредством наблюдения за орбитами спутников и движения других небесных тел вблизи рассматриваемой планеты.

См. также

Примечания

  1. У пданет газовых гигантов и звёзд «поверхность» понимается как область меньших высот в атмосфере, где давление равно атмосферному давлению на Земле на уровне моря (1,013×105 Па). Также к звёзд поверхностью иногда считают поверхность фотосферы.
  2. Аналог уравнения второго закона Ньютона, выполняющийся для неинерциальных систем отсчёта.
  3. Свободное падение тел. Ускорение свободного падения.
  4. Декларация III Генеральной конференции по мерам и весам (1901) (англ.). Международное бюро мер и весов. Дата обращения 9 апреля 2013.
  5. Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М. : Изд-во стандартов, 1990. — С. 237.
  6. CODATA Value: Newtonian constant of gravitation. physics.nist.gov. Дата обращения 23 февраля 2016.
  7. Грушинский Н. П. Гравиметрия // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 521. — 707 с. — 100 000 экз.
  8. Ускорение свободного падения // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1994. — Т. 4: Пойнтинга — Робертсона — Стримеры. — С. 245—246. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  9. Перуанцам живется легче, чем полярникам?

Литература

  • Енохович А. С. Краткий справочник по физике. — М.: «Высшая школа», 1976. — 288 с.