Гелий
← Водород | Литий →
2 n

He

Ne
ВодородГелийЛитийБериллийБорУглеродАзотКислородФторНеонНатрийМагнийАлюминийКремнийФосфорСераХлорАргонКалийКальцийСкандийТитанВанадийХромМарганецЖелезоКобальтНикельМедьЦинкГаллийГерманийМышьякСеленБромКриптонРубидийСтронцийИттрийЦирконийНиобийМолибденТехнецийРутенийРодийПалладийСереброКадмийИндийОловоСурьмаТеллурИодКсенонЦезийБарийЛантанЦерийПразеодимНеодимПрометийСамарийЕвропийГадолинийТербийДиспрозийГольмийЭрбийТулийИттербийЛютецийГафнийТанталВольфрамРенийОсмийИридийПлатинаЗолотоРтутьТаллийСвинецВисмутПолонийАстатРадонФранцийРадийАктинийТорийПротактинийУранНептунийПлутонийАмерицийКюрийБерклийКалифорнийЭйнштейнийФермийМенделевийНобелийЛоуренсийРезерфордийДубнийСиборгийБорийХассийМейтнерийДармштадтийРентгенийКоперницийНихонийФлеровийМосковийЛиверморийТеннессинОганесонПериодическая система элементов
2He
Hexagonal.svg
Electron shell 002 Helium.svg
Внешний вид простого вещества
Инертный газ без цвета, вкуса и запаха
Helium discharge tube.jpg
Свечение гелия в газоразрядной трубке
Свойства атома
Название, символ, номер Гелий/Helium (He), 2
Атомная масса
(молярная масса)
4,002602 ± 2,0E−6[1][2] а. е. м. (г/моль)
Электронная конфигурация 1s2
Радиус атома ? (31)[3] пм
Химические свойства
Ковалентный радиус 28[3] пм
Радиус иона 93[3] пм
Электроотрицательность 4,5 (шкала Полинга)
Электродный потенциал 0
Степени окисления 0
Энергия ионизации
(первый электрон)
 2361,3(24,47) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 0,147 г/см3 (при −270 °C);
0,00017846 (при +20 °C) г/см³
Температура плавления 0,95 K (-272,2 °C, -457,96 °F) (при 2,5 МПа)
Температура кипения 4,2152 K (-268,94 °C, -452,08 °F) (для 4He)[4]
Уд. теплота плавления 0,0138 кДж/моль
Уд. теплота испарения 0,0829 кДж/моль
Молярная теплоёмкость 20,79[4] Дж/(K·моль)
Молярный объём 22,4⋅103 см³/моль
Кристаллическая решётка простого вещества
Структура решётки гексагональная
Параметры решётки a=3,570 Å; c=5,84 Å
Отношение c/a 1,633
Прочие характеристики
Теплопроводность (300 K) 0,152 Вт/(м·К)
Номер CAS 7440-59-7
Эмиссионный спектр
438.793 нм443.755 нм447.148 нм471.314 нм492.193 нм501.567 нм504.774 нм587.562 нм667.815 нмHelium spectrum visible.png
2
Гелий
4,002602 ± 2,0E−6[1]
1s2

Ге́лий (He, лат. helium) — химический элемент VIII группы короткой формы (18-й группы длинной формы)[5] первого периода периодической системы химических элементов, имеет атомный номер 2. Возглавляет группу инертных газов[5].

Как простое вещество представляет собой инертный одноатомный газ без цвета, вкуса и запаха.

По распространённости во Вселенной и по лёгкости занимает второе место после водорода. Его температура кипения — самая низкая среди всех известных веществ.

Гелий добывается из природного газа процессом низкотемпературного разделения — так называемой фракционной перегонкой (см. «Фракционная дистилляция») либо путём мембранного газоразделения[6].

История открытия

Гелий в ампуле

18 августа 1868 года французский учёный Пьер Жансен, находясь во время полного солнечного затмения в индийском городе Гунтур, впервые исследовал хромосферу Солнца. Жансену удалось настроить спектроскоп таким образом, чтобы спектр короны Солнца можно было наблюдать не только при затмении, но и в обычные дни. На следующий же день спектроскопия солнечных протуберанцев наряду с линиями водорода — синей, зелёно-голубой и красной — выявила очень яркую жёлтую линию, первоначально принятую Жансеном и другими наблюдавшими её астрономами за линию D натрия. Жансен немедленно написал об этом во Французскую академию наук. Впоследствии было установлено, что ярко-жёлтая линия в солнечном спектре не совпадает с линией натрия и не принадлежит ни одному из ранее известных химических элементов[7][8].

Спустя два месяца, 20 октября, английский астроном Норман Локьер, не зная о разработках французского коллеги, также провёл исследования солнечного спектра. Обнаружив неизвестную жёлтую линию с длиной волны 588 нм (более точно — 587,56 нм), он обозначил её D3, так как она была очень близко расположена к фраунгоферовым линиям D1 (589,59 нм) и D2 (588,99 нм) натрия. Спустя два года Локьер совместно с английским химиком Эдуардом Франклендом, в сотрудничестве с которым он работал, предложил дать новому элементу название «гелий» (от др.-греч. ἥλιος — «солнце»)[8].

Интересно, что письма Жансена и Локьера пришли во Французскую Академию наук в один день — 24 октября 1868 года, однако письмо Локьера, написанное им четырьмя днями ранее, пришло на несколько часов раньше. На следующий день оба письма были зачитаны на заседании Академии. В честь нового метода исследования протуберанцев Французская академия решила отчеканить медаль. На одной стороне медали были выбиты портреты Жансена и Локьера над скрещёнными ветвями лавра, а на другой — изображение мифологического бога света Аполлона, правящего в колеснице четвёркой коней, скачущей во весь опор[8].

В 1881 году итальянец Луиджи Пальмьери опубликовал сообщение об открытии им гелия в вулканических газах фумарол. Он исследовал светло-жёлтое маслянистое вещество, оседавшее из газовых струй на краях кратера Везувия. Пальмьери прокаливал этот вулканический продукт в пламени бунзеновской горелки и наблюдал спектр выделявшихся при этом газов. Учёные круги встретили это сообщение с недоверием, так как свой опыт Пальмьери описал неясно. Спустя многие годы в составе фумарольных газов действительно были найдены небольшие количества гелия и аргона[8].

Только через 27 лет после своего первоначального открытия гелий был обнаружен на Земле — в 1895 году шотландский химик Уильям Рамзай, исследуя образец газа, полученного при разложении минерала клевеита, обнаружил в его спектре ту же ярко-жёлтую линию, найденную ранее в солнечном спектре. Образец был направлен для дополнительного исследования известному английскому учёному-спектроскописту Уильяму Круксу, который подтвердил, что наблюдаемая в спектре образца жёлтая линия совпадает с линией D3 гелия. 23 марта 1895 года Рамзай отправил сообщение об открытии им гелия на Земле в Лондонское королевское общество, а также во Французскую академию через известного химика Марселена Бертло[8].

Шведские химики П. Клеве и Н. Ленгле смогли выделить из клевеита достаточно газа, чтобы установить атомный вес нового элемента[9][10].

В 1896 году Генрих Кайзер, Зигберт Фридлендер, а ещё через два года Эдвард Бэли окончательно доказали присутствие гелия в атмосфере[8][11][12].

Ещё до Рамзая гелий выделил также американский химик Фрэнсис Хиллебранд, однако он ошибочно полагал, что получил азот[12], и в письме Рамзаю признал за ним приоритет открытия.

Исследуя различные вещества и минералы, Рамзай обнаружил, что гелий в них сопутствует урану и торию. Но только значительно позже, в 1906 году, Резерфорд и Ройдс установили, что альфа-частицы радиоактивных элементов представляют собой ядра гелия. Эти исследования положили начало современной теории строения атома[13].

График зависимости теплоёмкости жидкого гелия-4 от температуры

Только в 1908 году нидерландскому физику Хейке Камерлинг-Оннесу удалось получить жидкий гелий. Он использовал дросселирование (см. Эффект Джоуля — Томсона), после того как газ был предварительно охлаждён в кипевшем под вакуумом жидком водороде. Попытки получить твёрдый гелий ещё долго оставались безуспешными даже при температуре в 0,71 K, которую достиг ученик Камерлинг-Оннеса — немецкий физик Виллем Хендрик Кеезом. Лишь в 1926 году, применив давление выше 35 атм и охладив сжатый гелий в кипящем под разрежением жидком гелии, ему удалось выделить кристаллы[14].

В 1932 году Кеезом исследовал характер изменения теплоёмкости жидкого гелия с температурой. Он обнаружил, что около 2,19 K медленный и плавный подъём теплоёмкости сменяется резким падением, и кривая теплоёмкости приобретает форму греческой буквы λ (лямбда). Отсюда температуре, при которой происходит скачок теплоёмкости, присвоено условное название «λ-точка»[14]. Более точное значение температуры в этой точке, установленное позднее, — 2,172 K. В λ-точке происходят глубокие и скачкообразные изменения фундаментальных свойств жидкого гелия — одна фаза жидкого гелия сменяется в этой точке на другую, причём без выделения скрытой теплоты; имеет место фазовый переход II рода. Выше температуры λ-точки существует так называемый гелий-I, а ниже её — гелий-II[14].

В 1938 году советский физик Пётр Леонидович Капица открыл явление сверхтекучести жидкого гелия-II, которое заключается в резком снижении коэффициента вязкости, вследствие чего гелий течёт практически без трения[14][15]. Вот что он писал в одном из своих докладов про открытие этого явления[16]:

«… такое количество тепла, которое фактически переносилось, лежит за пределами физических возможностей, что тело ни по каким физическим законам не может переносить больше тепла, чем его тепловая энергия, помноженная на скорость звука. С помощью обычного механизма теплопроводности тепло не могло переноситься в таком масштабе, как это наблюдалось. Надо было искать другое объяснение.

И вместо того, чтобы объяснить перенос тепла теплопроводностью, то есть передачей энергии от одного атома к другому, можно было объяснить его более тривиально — конвекцией, переносом тепла в самой материи. Не происходит ли дело так, что нагретый гелий движется вверх, а холодный опускается вниз, благодаря разности скоростей возникают конвекционные токи, и таким образом происходит перенос тепла. Но для этого надо было предположить, что гелий при своем движении течет без всякого сопротивления. У нас уже был случай, когда электричество двигалось без всякого сопротивления по проводнику. И я решил, что гелий так же движется без всякого сопротивления, что он является не сверхтеплопроводным веществом, а сверхтекучим.

… Если вязкость воды равняется 10⋅10−2 

Название произошло от греч. ἥλιος — «Солнце» (см. Гелиос). Любопытен тот факт, что в названии элемента было использовано характерное для металлов окончание «-ий» (на лат. «-um» — «Helium»), так как Локьер предполагал, что открытый им элемент является металлом. По аналогии с другими благородными газами логично было бы дать ему имя «гелион» («Helion»)[8]. В современной науке название «гелион» закрепилось за ядром лёгкого изотопа гелия — гелия-3[источник не указан 195 дней].

Распространённость

Во Вселенной

Гелий занимает второе место по распространённости во Вселенной после водорода — около 23 % по массе[17]. Однако на Земле этот элемент редок. Практически весь гелий Вселенной образовался в первые несколько минут после Большого взрыва[18][19], во время первичного нуклеосинтеза. В современной Вселенной почти весь новый гелий образуется в результате термоядерного синтеза из водорода в недрах звёзд (см. протон-протонный цикл, углеродно-азотный цикл). На Земле он образуется в результате альфа-распада тяжёлых элементов (альфа-частицы, излучаемые при альфа-распаде, — это ядра гелия-4)[20]. Часть гелия, возникшего при альфа-распаде и просачивающегося сквозь породы земной коры, захватывается природным газом, концентрация гелия в котором может достигать 7 % от объёма и выше.

Земная кора

В рамках восемнадцатой группы гелий по содержанию в земной коре занимает второе место (после аргона)[21].

Содержание гелия в атмосфере (образуется в результате распада тория, урана и их дочерних радионуклидов) — 5,27⋅10−4 % по объёму, 7,24⋅10−5 % по массе[4][12][20]. Запасы гелия в атмосфере, литосфере и гидросфере оцениваются в 5⋅1014 м³[4]. Гелионосные природные газы содержат, как правило, до 2 % гелия по объёму. Исключительно редко встречаются скопления газов, гелиеносность которых достигает 8—16 %[20].

Среднее содержание гелия в земном веществе — 0,003 мг/кг, или 0,003 г/т[20]. Наибольшая концентрация гелия наблюдается в минералах, содержащих уран, торий и самарий[22]: клевеите, фергюсоните, самарските, гадолините, монаците (монацитовые пески в Индии и Бразилии), торианите. Содержание гелия в этих минералах составляет 0,8—3,5 л/кг, а в торианите оно достигает 10,5 л/кг[12][20]. Этот гелий является радиогенным и содержит лишь изотоп 4
He
, он образуется из альфа-частиц, излучаемых при альфа-распаде урана, тория и их дочерних радионуклидов, а также других природных альфа-активных элементов (самарий, гадолиний и т. д.).

В 2016 году норвежские и британские ученые обнаружили залежи гелия в районе озера Виктория в Танзании. По примерным оценкам экспертов, объём запасов — 1,5 млрд кубических метров[23].

Значительные запасы гелия содержатся в восточносибирских газовых месторождениях в России. Запасы гелия в Ковыктинском месторождении оцениваются в 2,3 млрд кубометров[24] , в Чаяндинском месторождении — в 1,4 млрд кубометров[25].

Мировой рынок гелия

Мировые запасы гелия составляют 45,6 млрд м³.

Мировой рынок гелия 170-190 млн м³/год [26] Основная доля мирового производства гелия приходится на США и Катар; с 2015 г. доля Соединенных Штатов в мировом производственном балансе снизилась с 67 % до примерно 56 % и продолжает сокращаться, Катар и Алжир занимают соответственно около 28 и 9 % рынка.

Объём мирового потребления гелия составляет примерно 170 млн м³ в год, спрос в России не превышает 5 млн м³.[27] Россия сама себя обеспечивает этим газом. Газообразный гелий получают из природного и нефтяного газов; в настоящее время гелий извлекается на гелиевом заводе ООО «Газпром добыча Оренбург»[28] в Оренбурге из газа с низким содержанием гелия (до 0,055 % об.), поэтому российский гелий имеет высокую себестоимость. Актуальной проблемой является освоение и комплексная переработка природных газов крупных месторождений Восточной Сибири с высоким содержанием гелия (0,15—1 % об.), что позволит намного снизить его себестоимость. Россия с 2021 года планирует стать одним из крупнейших экспортеров гелия[29].

9 июня 2021 года возле города Свободный Амурской области состоялся запуск крупнейшего в мире завода по производству гелия - Амурского газоперерабатывающего завода, мощностью 60 млн м³ гелия в год. [30]

Стоимость